NILPOTENT SUBGROUPS OF SELF EQUIVALENCES OF TORSION SPACES

ΒY

Kai Xu

Department of Mathematics, National University of Singapore, Singapore 0511 e-mail: matxukai@leonis.nus.sg

ABSTRACT

Let X be a finite p-torsion based connected nilpotent CW-complex. We give a criterion of a subgroup of $\mathcal{E}(X)$, the group of self equivalences of X, to be a nilpotent group, in terms of its action on $E_*(X)$, where E is a CW-spectrum, satisfying some technical conditions.

Recall that a spectrum E is **connective** if there is an integer k such that $\pi_i(E) = 0$ if i < k and $\pi_k(E) \neq 0$. We write ct(E) = k.

Consider the induced map from $\mathcal{E}(X)$, the group of based self equivalences of a space X, to $\prod_{i=-\infty}^{+\infty} \operatorname{Aut}(E_i(X))$. Each subgroup in $\mathcal{E}(X)$ acts on $E_*(X)$ in the natural way.

Let X be a based connected finite nilpotent CW-complex, its integral homology theory is of p-torsion and $\pi_k(E) \otimes \mathbb{Z}_{(p)} \neq 0$, where p is a fixed prime and E be a connective CW-spectrum with ct(E) = k. The main purpose of this note is to prove the following theorem.

THEOREM 0.1: If a subgroup $G \subseteq \mathcal{E}(X)$ acts on $E_i(X)$ nilpotently for all *i*, then *G* is nilpotent.

This result can be thought of a generalisation of Theorem 3.5 of [4]. Namely, the assumption of E being a ring spectrum in it has been removed.

Received August 2, 1994

1. A reduction of Theorem 0.1

Let G be a subgroup of $\mathcal{E}(X)$, satisfying the hypothesis in Theorem 0.1. For $j \geq 0$, write α_j for the induced map:

$$[\Sigma^{j}X,\Sigma^{j}X]\longrightarrow\prod_{i>0}\operatorname{End}H_{i}(\Sigma^{j}X,\mathbb{F}_{p}),$$

where j is allowed to be zero by indentifying $\Sigma^0 X$ as X. Denote by $O_p(C)$ the Fitting p-subgroup of a group C. Recall a result in [1]:

(1)
$$f \in O_p(\mathcal{E}(X))$$
 if and only if $\alpha_0(f) \in O_p\{\alpha_0(\mathcal{E}(X))\}$.

Then we have

$$\frac{G}{G \cap O_p(\mathcal{E}(X))} \cong \frac{\alpha_0(G)}{\alpha_0(G) \cap O_p\{\alpha_0(\mathcal{E}(X))\}}.$$

Since Fitting *p*-subgroups are nilpotent, to show G is a nilpotent group, it suffices to prove $\alpha_0(G)$ is.

For simplicity, we denote by Σ^s both the *s*-fold suspension map and its induced map in homology. Write $\Sigma^s(C)$ for the subgroup consisting of the image elements of Σ^s on a group C. Then $\Sigma^s: \alpha_0(G) \longrightarrow \Sigma^s \alpha_0(G)$ being injective and the relation: $\Sigma^s \alpha_0(G) = \alpha_s \Sigma^s(G)$ imply that $\alpha_0(G)$ is isomorphic to a subgroup of $\alpha_s \Sigma^s(G)$. So we only need prove the last group is nilpotent. In the following we let *s* be sufficiently large, so that we can work in the stable category.

2. Nilpotent groups in stable case

Recall a finite p-torsion space X is atomic if each self map of it is either nilpotent or an equivalence. By [7], [8], we have a splitting:

(2)
$$\Sigma^j X \simeq Y_1 \bigvee \cdots \bigvee Y_n,$$

where $j \ge 1$ and Y_i is a wedge of atomic spaces of the same connectivities and the connectivity of Y_i , say, k_i , is strictly increasing with *i*. Denote by λ_j the induced map:

$$[\Sigma^j X, \Sigma^j X] \longrightarrow \prod_{i=1}^n \operatorname{End} H_{k_i}(\Sigma^j X, \mathbb{F}_p).$$

LEMMA 2.1: If $t \in \mathcal{E}(\Sigma^s X)$ and s is sufficiently large, then $\lambda_s(t)$ is nilpotent $\iff \alpha_s(t)$ is.

Proof: The direction ' \Leftarrow ' is clear. Now we show the opposite direction. Assume $\lambda_s(t)$ is nilpotent. Since $[\Sigma^s X, \Sigma^s X]$ is finite, there is an integer m such that $t^{2m} = t^m$. We wish to show that t^m is the constant map. For each element $g \in [\Sigma^s X, \Sigma^s X]$, we define the mapping telescope:

$$(\Sigma^s X)_g := \coprod (\{r\} \times I \times \Sigma^s X) / \sim$$

where I = [0, 1], the disjoint union is taken over all non-negative integers r, and '~' represents the relations that $(r, 1, y) \sim (r+1, 0, g(y))$ and $(r, t, *) \sim *$ with the quotient topology, where $y \in \Sigma^s X$. Setting $g = t^m$ and $1 - t^m$, respectively, we obtain the mapping telescopes Z_1 and Z_2 , respectively, and therefore a splitting: $\Sigma^s X \simeq Z_1 \bigvee Z_2$ such that

$$t^m: Z_1 \bigvee Z_2 \longrightarrow Z_1 \bigvee Z_2$$

is in the form $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Since the splitting (2) is unique up to the ordering [7], [8], either Z_1 is a point or the connectivity of Z_1 is k_i for some i with $1 \le i \le n$ (see (2)). On the other hand, that $\lambda(t^m) = 0$ implies $H_{k_i}(b, \mathbb{Z}) = 0$, where b is the following composition map,

$$Z_1 \xrightarrow{incl.} Z_1 \bigvee Z_2 \xrightarrow{t^m} Z_1 \bigvee Z_2 \xrightarrow{proj.} Z_1,$$

which is the identity. So Z_1 is a point and therefore t^m is constant.

We write $HO_p(G)$ for the product group of H and $O_p(G)$. From [1], we know each element $f \in \alpha_s(\Sigma^s G)$ can be written as gh, where h is some element in $O_p\{\alpha_s(\mathcal{E}(\Sigma^s X))\}$ and $g \in \alpha_s(\mathcal{E}(\Sigma^s X))$ is block-diagonal: it sends $H_l(Y_i, \mathbb{F}_p)$ to itself for all given l and i (see (2)). All such elements g form a group Φ , say.

Then

(3)
$$\alpha_s(\Sigma^s G)O_p\{\alpha_s(\mathcal{E}(\Sigma^s X))\} \cong \Phi O_p\{\alpha_s(\mathcal{E}(\Sigma^s X))\}.$$

Recall that there is an Atiyah–Hizerbruch spectral sequence

(4)
$$E_{b,t}^2 = H_b(Y_i, \pi_t(E)) \Longrightarrow E_{b+t}(Y_i),$$

where i = 1, ..., n. From the definitions of k_i and ct(E), we obtain $E_{k_i,ct(E)}^2 = E_{k_i,ct(E)}^{\infty}$. So that Φ acts nilpotently on $E_{k_i+ct(E)}(Y_i)$ implies it also acts nilpotently on $H_{k_i}(Y_i, \pi_{ct(E)}(E))$ for all *i*. Before carrying on, we first prove the following,

LEMMA 2.2: Let A be an abelian group satisfying $A \otimes \mathbb{Z}_{(p)} \neq 0$. Then Φ acts nilpotently on $H_{k_i}(Y_i, A)$ if and only if it does on $H_{k_i}(Y_i, \mathbb{Z})$.

Proof: The connectivity hypothesis: $H_{k_i-1}(Y_i, \mathbb{Z}) = 0$ implies

$$\operatorname{Tor}(H_{k_i-1}(Y_i,\mathbb{Z}),A)=0.$$

So the Universal Coefficient Theorem gives rise to a natural isomorphism:

$$H_{k_i}(X,\mathbb{Z})\otimes A \xrightarrow{\cong} H_{k_i}(X,A)$$

Hence the result follows from the assumption on A and that $H_{k_i}(X, \mathbb{Z})$ is a finite abelian *p*-group.

COROLLARY 2.3: Φ acts nilpotently on $H_{k_i}(Y_i, A) \iff$ it does on $H_{k_i}(Y_i, \mathbb{F}_p)$.

By setting $A = \pi_{ct(E)}(E)$ in the preceding corollary, we conclude Φ acts nilpotently on $H_{k_i}(Y_i, \mathbb{F}_p)$. We wish to show that Φ acts nilpotently on $H_l(\Sigma^s X, \mathbb{F}_p)$ for all l. Since it is block-diagonal, it is sufficient to prove that Φ acts nilpotently on $H_l(Y_i, \mathbb{F}_p)$ for all l and i.

To simplify the notations, we denote by $g_{l\sigma}$ the induced map $H_l(f_{\sigma}, \mathbb{F}_p)$ for a given element $f_{\sigma} \in [Y_i, Y_i]$. Let

$$S(m,l) = \{ (g_{l1} - 1) \cdots (g_{lm} - 1) \mid g_{l\sigma} \in \Phi, \ \sigma = 1, \dots, m \}$$

and K(m,l) be the right ideal, generated by S(m,l) in the finite ring R_s , the image of α_s .

Since Φ acts nilpotently on $H_{k_i}(Y_i, \mathbb{F}_p)$, by the definition of nilpotent action, we have, for a sufficiently large integer N,

$$K(N, k_i)H_{k_i}(Y_i, \mathbb{F}_p) = 0.$$

For a given element $t \in [Y_i, Y_i]$, we write $H_*(t, \mathbb{F}_p)$ for the induced map of t on homology. Lemma 2.1 tells us that $H_{k_i}(t, \mathbb{F}_p) - 1$ is nilpotent for all i if and only if $H_l(t, \mathbb{F}_p) - 1$ is for all l. Thus each element in K(N, l) is nilpotent for all *l*. Since R_s is a finite therefore an Artinian ring, there is an integer q, such that $K(Nq, l) \subseteq K(N, l)^q = 0$, see, for example, the proposition of §4.4 in [5]. It follows that Φ acts nilpotently on $H_l(Y_i, \mathbb{F}_p)$ for all l by the definition of nilpotent action.

PROPOSITION 2.4: Φ is a nilpotent group.

Proof: Note that Φ is a subgroup of $\prod_{l>0} \operatorname{Aut} H_l(\Sigma^s X, \mathbb{F}_p)$ and it acts nilpotently on $\prod_{l>0} H_l(\Sigma^s X, \mathbb{F}_p)$. So it is nilpotent, see the discussion after Theorem A in [2], and §7.1.1.1 in [6].

To prove $\alpha_s(\Sigma^s G)$ is nilpotent, we have to show

$$\frac{\alpha_s(\Sigma^s G)}{\alpha(\Sigma^s G) \cap O_p\{\alpha_s(\mathcal{E}(X))\}}$$

is nilpotent. This follows from Proposition 2.4 and the following isomorphisms,

$$\frac{\alpha_s(\Sigma^s G)}{\alpha_s(\Sigma^s G) \cap O_p\{\alpha_s(\mathcal{E}(X))\}} \cong \frac{\alpha_s(\Sigma^s G) O_p\{\alpha_s(\mathcal{E}(X))\}}{O_p\{\alpha_s(\mathcal{E}(X))\}}$$
$$\cong \frac{\Phi O_p\{\alpha_s(\mathcal{E}(X))\}}{O_p\{\alpha_s(\mathcal{E}(X))\}} \cong \frac{\Phi}{\Phi \cap O_p\{\alpha_s(\mathcal{E}(X))\}},$$

where the first and the last isomorphisms are implied by the Second Group Isomorphism Theorem and the second is obtained from (3).

References

- M. C. Crabb, J. R. Hubbuck and K. Xu, Fields of spaces, in Adams Memorial Symposium on Algebraic Topology, Lecture Notes Series 175, London Mathematical Society, Cambridge University Press, Cambridge, England, 1992, pp. 241-254.
- [2] E. Dror and A. Zabrodsky, Unipotency and nilpotency in homotopy equivalences, Topology 18 (1979), 257-281.
- [3] J. R. Hubbuck, Self maps of H-spaces, in Advances in Homotopy Theory, Lecture Notes Series 139, London Mathematical Society, Cambridge University Press, Cambridge, England, 1989, pp. 105–110.
- [4] K. I. Maruyama and M. Mimura, Nilpotent subgroups of the group of self-homotopy equivalences, Israel Journal of Mathematics 72 (1990), 313-319.
- [5] R. S. Pierce, Associative algebras, in Algebraic Systems, GTM 88, Springer-Verlag, New York, 1982.

- [6] B. I. Plotkin, Groups of Automorphisms of Algebraic Systems, Wolters-Noordhoff Publishing, Groningen, The Netherlands, 1972.
- [7] C. W. Wilkerson, Genus and concellation, Topology 14 (1975), 29-36.
- [8] K. Xu, Endomorphisms of complete spaces, Thesis, Aberdeen University, 1991.