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ABSTRACT 

Let X be a finite p-torsion based connected nilpotent CW-complex. We 

give a criterion of a subgroup of $ (X) ,  the group of self equivalences of 

X,  to be a nilpotent group, in terms of its action on E.(X) ,  where E is a 

CW-spect rum,  satisfying some technical conditions. 

Recall that a spectrum E is c o n n e c t i v e  if there is an integer k such that 

~ ( E )  = 0 if i < k and ~k(E) # 0. We write ct (E)  = k. 

Consider the induced map from C(X), the group of based self equivalences of 

a space X, to I]+__~ ~r Aut(Ei(X)) .  Each subgroup in $ (X)  acts on E , ( X )  in the 

natural way. 

Let X be a based connected finite nilpotent CW-complex, its integral homology 

theory is of p-torsion and ~rk(E) | Z(p) # 0, where p is a fixed prime and E be 

a connective CW-spectrum with ct (E)  = k. The main purpose of this note is to 

prove the following theorem. 

THEOREM 0.1: I ra  subgroup G C_ E ( X ) acts on Ei(  X ) ni lpotently  for all i, then 

G is nilpotent.  

This result can be thought of a generalisation of Theorem 3.5 of [4]. Namely, 

the assumption of E being a ring spectrum in it has been removed. 
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1. A r e d u c t i o n  o f  T h e o r e m  0.1 

Let G be a subgroup of g(X), satisfying the hypothesis in Theorem 0.1. For 

j _> 0, write aj for the induced map: 

[)]:iX, I~ j X] " H End Hi(I~ j X, Fp ), 
i >o  

where j is allowed to be zero by indentifying E~ as X. Denote by Op(C) the 

Fitting p-subgroup of a group C. Recall a result in [1]: 

(I) f e Op(g(X)) if and only if ao(f) e Op{aO($(X))}. 

Then we have 
a ~ ao(a)  

a n o,,(e(x)) -  o(a) n 

Since Fitting p-subgroups are nilpotent, to show G is a nilpotent group, it suffices 

to prove ao(G) is. 

For simplicity, we denote by E s both the s-fold suspension map and its induced 

map in homology. Write E s (C) for the subgroup consisting of the image elements 

of E s on a group C. Then Es: ao(G) , E~a0(G) being injective and the 

relation: E~a0(G) = a~E~(G) imply that ao(G) is isomorphic to a subgroup of 

ctsE~(G). So we only need prove the last group is nilpotent. In the following we 

let s be sufficiently large, so that we can work in the stable category. 

2. N i l p o t e n t  g r o u p s  in s t a b l e  case  

Recall a finite p-torsion space X is atomic if each self map of it is either nilpotent 

or an equivalence. By [7], [8], we have a splitting: 

(2) _- Y ,V . . .VYo,  

where j _> 1 and Y/ is a wedge of atomic spaces of the same connectivities and 

the connectivity of Yi, say, ki, is strictly increasing with i. Denote by Aj the 

induced map: 
n 

[EJX' EJX] ' H End Hk, (EJX, Fp). 
i = l  



Vol. 93, 1996 NILPOTENT SUBGROUPS OF SELF EQUIVALENCES 191 

LEMMA 2.1: If  t E E(EsX)  and s is sufficiently large, then As(t) is nilpotent r 

as(t) is. 

Proof: The direction ' ~ '  is clear. Now we show the opposite direction. Assume 

As(t) is nilpotent. Since [EsX, EsX] is finite, there is an integer m such that  

t 2m = t TM. We wish to show that t TM is the constant map. For each element 

g E [E~X, EsX], we define the mapping telescope: 

(zsx)~ := ]_I({r}  • I • ~ x ) / ~  

where I = [0, 1], the disjoint union is taken over all non-negative integers r, and 

'~ '  represents the relations that (r, 1, y) ~ ( r+  1, 0, g(y)) and (r, t, *) ~ * with the 

quotient topology, where y E E~X. Setting g = t TM and 1 - t TM, respectively, we 

obtain the mapping telescopes Z1 and Z2, respectively, and therefore a splitting: 

E~X -~ Z1 V z2 such that  

tin: Zl V z~ . Zl V z~ 

/ 1 0 \ 
0 ) Since the splitting (2) is  unique up to the ordering [7], is in the form 0 ' 

\ / 

[8], either Z1 is a point or the connectivity of Z1 is kl for some i with 1 < i < n 

(see (2)). On the other hand, that A(t '~) = 0 implies Hk,(b,Z) = 0, where b is 

the following composition map, 

Z1 incl. Z1 V Z2 t'~* Z1 V z2 pro3. z1, 

which is the identity. So Zx is a point and therefore t m is constant. | 

We write HOp(G) for the product group of H and Op(G). From [1], we know 

each element f E as(ESG) can be written as gh, where h is some element in 

Op{as(g(EsX))} and g e as(s is block-diagonal: it sends Ht(Yi, Fp) to 

itself for all given I and i (see (2)). All such elements g form a group q), say. 

Then 

(3) a~(E~G)Op{a (g(E~X))} ~ (~Op{a (g(E~X))} 

Recall that there is an Atiyah-Hizerbruch spectral sequence 

(4) E ~ = Hb(V~, ~ t (E) )  ~ Eb+t (~ ) ,  b,t 
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where i = 1 , . . .  ,n. From the definitions of ki and ct(E), we obtain E2,ct(E) -= 
Ek~ So that  �9 acts nilpotently on Ek,+ct(E)(Yi) implies it also acts 

nilpotently on Hk, (Y~, Irct(E)(E)) for all i. Before carrying on, we first prove 

the following, 

LEMMA 2.2: Let A be an abelian group satisfying A | Z(p) ~ 0. Then r acts 
nilpotently on Hk~ (Yi, A) if and only if it does on Hk~ (Yi, Z). 

Proof." The connectivity hypothesis: Hk~-I(Y~, Z) = 0 implies 

Wor(Hk,_l (Y/, Z), A) = 0. 

So the Universal Coefficient Theorem gives rise to a natural isomorphism: 

Hk, (X ,Z) |  ~-. Hk,(X,A). 

Hence the result follows from the assumption on A and that Hk~ (X, Z) is a finite 

abelian p-group. | 

COROLLARY 2.3: ~ acts nilpotently on Hk, (Yi, A) r it does on Hk, (Y~, ]~p). 

By setting A = rct(E)(E) in the preceding corollary, we conclude �9 acts nilpo- 

tently on Hk,(Y~,Fp). We wish to show that r acts nilpotently on HI(EsX, Fp) 

for all 1. Since it is block-diagonal, it is sufficient to prove that  r acts nilpotently 

on Hz(Yi,Fp) for all l and i. 

To simplify the notations, we denote by glo the induced map Hz(fo, Fp) for a 

given element fo E [Yi, Y~]. Let 

S(m, l )= { ( g , l - 1 ) . . . ( g t m - 1 )  lgla C r a = l , . . . , r n }  

and K(m, l) be the right ideal, generated by S(m, l) in the finite ring Rs, the 

image of as. 

Since r acts nilpotently on Hk, (Y~, Fp), by the definition of nilpotent action, 

we have, for a sufficiently large integer N, 

K(N, k~)Hk,(Y~,Fp) = 0. 

For a given element t E [Y~, Yi], we write H.  (t, Fp) for the induced map of t on 

homology. Lemma 2.1 tells us that  Hk,(t, Fp) - 1 is nilpotent for all i if and 

only if Hl(t, Fp) - 1 is for all l. Thus each element in K(N,I) is nilpotent for 
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all I. Since R~ is a finite therefore an Artinian ring, there is an integer q, such 

that K(Nq,  l) C_ K(N,  l) q = 0, see, for example, the proposition of w in [5]. It 

follows that  r acts nilpotently on Hz (Y~, Fp) for all I by the definition of nilpotent 

action. 

PROPOSITION 2.4: @ is a nilpotent group. 

Proo~ Note that @ is a subgroup of rL>0Aut  HdEsX,  Fp) and it acts nilpo- 

tently on l-L>0 Hz( ESX, Fp). So it is nilpotent, see the discussion after Theorem 

A in [2], and w in [6]. | 

To prove a~(ESG) is nilpotent, we have to show 

n 

is nilpotent. This follows from Proposition 2.4 and the following isomorphisms, 

~ ( S  ~a) _~ as(z~a)Op{a~(E(X))}  

~ s ( ~ a )  • o A ~ ( c ( x ) ) }  - o A ~ s ( c ( x ) ) }  

�9 n 

where the first and the last isomorphisms are implied by the Second Group 

Isomorphism Theorem and the second is obtained from (3). | 
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