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ABSTRACT
Let X be a finite p-torsion based connected nilpotent CW-complex. We
give a criterion of a subgroup of £(X), the group of self equivalences of
X, to be a nilpotent group, in terms of its action on E.(X), where E is a

CW-spectrum, satisfying some technical conditions.

Recall that a spectrum E is connective if there is an integer k such that
m(E)=01if 7 < k and 74 (E) # 0. We write ct(E) = k.

Consider the induced map from £(X), the group of based self equivalences of
aspace X, to [[[=°__ Aut(E;(X)). Each subgroup in £(X) acts on E,(X) in the
natural way.

Let X be a based connected finite nilpotent CW-complex, its integral homology
theory is of p-torsion and mx(E) ® Z,) # 0, where p is a fixed prime and E be
a connective CW-spectrum with ct(E) = k. The main purpose of this note is to

prove the following theorem.

THEOREM 0.1: If a subgroup G C £(X) acts on E;(X) nilpotently for all i, then
G is nilpotent.

This result can be thought of a generalisation of Theorem 3.5 of [4]. Namely,
the assumption of E being a ring spectrum in it has been removed.
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1. A reduction of Theorem 0.1

Let G be a subgroup of £(X), satisfying the hypothesis in Theorem 0.1. For
J 2 0, write a; for the induced map:

[£7X, %9 X] — [ End Hi(S7 X, F,),
>0

where j is allowed to be zero by indentifying X°X as X. Denote by O,(C) the
Fitting p-subgroup of a group C. Recall a result in [1]:

(1) f € 0,(6(X)) if and only if ao(f) € Op{an(£(X))}.

Then we have
G ao(G)

~

GNO,E(X))  ao(G)NOp{an(E(X))}

Since Fitting p-subgroups are nilpotent, to show G is a nilpotent group, it suffices
to prove ap(G) is.

For simplicity, we denote by ¥° both the s-fold suspension map and its induced
map in homology. Write £.(C') for the subgroup consisting of the image elements
of ¥° on a group C. Then %% ao(G) — T*ay(G) being injective and the
relation: L%ao(G) = @, X°(G) imply that ag(G) is isomorphic to a subgroup of
a;X%(G). So we only need prove the last group is nilpotent. In the following we
let s be sufficiently large, so that we can work in the stable category.

2. Nilpotent groups in stable case

Recall a finite p-torsion space X is atomic if each self map of it is either nilpotent

or an equivalence. By [7], [8], we have a splitting:

(2) PSS AVEIRAVA A

where 7 > 1 and Y; is a wedge of atomic spaces of the same connectivities and
the connectivity of Y;, say, k;, is strictly increasing with i. Denote by A; the
induced map:

(29X, 2 X] — [ ] End He, (2 X, F,).

=1
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LEMMA 2.1: Ift € £(£°X) and s is sufficiently large, then \,(t) is nilpotent <
a,(t) Is.

Proof: The direction ‘<="1is clear. Now we show the opposite direction. Assume
As(t) is nilpotent. Since [X°X, X°X] is finite, there is an integer m such that
t?™ = t™. We wish to show that t™ is the constant map. For each element

g € [2°X, X% X], we define the mapping telescope:

(T2 X)g = [J({r} x Ix Z°X)/ ~

where I = [0, 1], the disjoint union is taken over all non-negative integers r, and
‘~’ represents the relations that (r,1,y) ~ (r+1,0, g(y)) and (r, t, *) ~ * with the
quotient topology, where y € ¥*X. Setting ¢ = t™ and 1 — t™, respectively, we

obtain the mapping telescopes Z; and Zj, respectively, and therefore a splitting:
Y8X ~ Zy\/ Z, such that

th Zl\/ZQ—>Zl\/Z2

is in the form ( (1) 8) Since the splitting (2) is unique up to the ordering [7],

[8], either Z; is a point or the connectivity of Z; is k; for some ¢ with 1 < i< n
(see (2)). On the other hand, that A(t™) = 0 implies Hy, (b,Z) = 0, where b is
the following composition map,

Zlﬂ;“Zl\/Zz—tm—’Zl\/Zz 2o, 73,

which is the identity. So Z; is a point and therefore t™ is constant. ]

We write HO,(G) for the product group of H and O,(G). From [1], we know
each element f € a,(X*G) can be written as gh, where h is some element in
Op{as(£(£°X))} and g € a,(£(X°X)) is block-diagonal: it sends H,(Y;,F,) to
itself for all given ! and ¢ (see (2)). All such elements g form a group &, say.

Then

3) as(5°G)0p{as(E(2°X))} = 20, {as(£(2° X))}
Recall that there is an Atiyah—Hizerbruch spectral sequence

(4) El?,t = Hb(Yith(E)) = Eb+t(yi)’
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where i = 1,...,n. From the definitions of k; and ct(E), we obtain E;‘c’i t(E) =
,E,‘c’?’ct(E). So that ® acts nilpotently on Ej i g)(Y:) implies it also acts
nilpotently on Hy, (Y;, 7et(g)(E)) for all i. Before carrying on, we first prove
the following,

LEMMA 2.2: Let A be an abelian group satisfying A ® Z,) # 0. Then ® acts
nilpotently on Hy,(Y;, A) if and only if it does on Hy, (Y;, Z).

Proof: The connectivity hypothesis: Hy,_1(Y;,Z) = 0 implies
Tor(Hy,—1(Y;, Z), A) = 0.
So the Universal Coefficient Theorem gives rise to a natural isomorphism:
H,(X,2)® A=+ H (X, A).

Hence the result follows from the assumption on A and that Hy, (X, Z) is a finite
abelian p-group. 1

COROLLARY 2.3: ® acts nilpotently on Hy, (Y;, A) <= it does on Hy (Y;,F,).

By setting A = 7. (g)(E) in the preceding corollary, we conclude & acts nilpo-
tently on Hy, (Y;,F,). We wish to show that & acts nilpotently on H,(X°X,F,)
for all I. Since it is block-diagonal, it is sufficient to prove that ® acts nilpotently
on H(Y;,F,) for all I and .

To simplify the notations, we denote by g;, the induced map H;(f,,F,) for a
given element f, € [V;,Y:]. Let

Sm,)={(gn-1)--(gm—1) |9, €®, c=1,...,m}

and K(m,!) be the right ideal, generated by S(m,!) in the finite ring R, the
image of as,.

Since ® acts nilpotently on Hy,(Y;,F,), by the definition of nilpotent action,
we have, for a sufficiently large integer N,

K(N’ ki)Hk.'(Y;’FP) =0.

For a given element t € [Y;,Y;], we write H.(t,F,) for the induced map of ¢ on
homology. Lemma 2.1 tells us that Hy,(¢,F,) — 1 is nilpotent for all ¢ if and
only if Hy(t,F,) — 1 is for all l. Thus each element in K(N,!) is nilpotent for
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all I. Since R; is a finite therefore an Artinian ring, there is an integer ¢, such
that K(Ng,l) C K(N,1)? = 0, see, for example, the proposition of §4.4 in [5]. It
follows that ® acts nilpotently on H;(Y;,F,) for all I by the definition of nilpotent
action.

PROPOSITION 2.4: & is a nilpotent group.

Proof: Note that @ is a subgroup of [],,, Aut H;(£°X,F,) and it acts nilpo-
tently on [],5 o Hi(¥°X,F;). So it is nilpotent, see the discussion after Theorem
A in [2], and §7.1.1.1 in [6]. |

To prove a,(X*G) is nilpotent, we have to show

as(X5G)
a(22G) N Op{as(E(X))}

is nilpotent. This follows from Proposition 2.4 and the following isomorphisms,

as(2°G) & as(2°G)0p{as(E(X))}
as(EsG) n OP{QS(“"(X))} Op{as(g(X))}
_ 20, {a,(ECX)} ®

Op{as(E(X)} ~ 2N 0, {a (EX))}

where the first and the last isomorphisms are implied by the Second Group
Isomorphism Theorem and the second is obtained from (3). |
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